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1. Introduction 
 
Data synchronization is an important aspect in the operation of the trigger and readout systems of 
the AGATA experiment. A high increase in efficiency with respect to current spectrometers is 
expected in AGATA by means of online gamma ray tracking and pulse shape analysis (PSA). 
Tracking and PSA require the concurrent digitization of preamplifier signals of the 36 fold 
segmented Ge crystals composing the array. Therefore, the design of the front-end readout and 
level-1 (L1) trigger in AGATA  follows a synchronous pipeline model: the detector data are stored 
in pipeline buffers at the global AGATA frequency, waiting the global L1 decision. The L1 latency 
must be constant and shall match the pipeline buffer length. The whole system behaves 
synchronously and synchronization at different levels and in different contexts has to be achieved 
and monitored for proper operation of the system. In order to fix definitions, we list in Table 1 the 
various synchronization types that we refer to. 
 
 

Type Description 

Sampling Synchronization Synchronization of the detector signals with the 
clock phase 

Serial Link Synchronization Recovery of parallel data words from the serial bit 
stream. 

Trigger Requests Alignment Alignment of trigger data at the input of the trigger 
pipeline processor 

L1 Validations 
Synchronization 

Synchronization of L1A signal with data in the 
readout pipelines 

Event Synchronization Assignment of global clock and event number to 
data fragments in the DAQ path 

 
Table 1: Synchronization types. 
 
In AGATA each crystal is considered as a separate entity and from the point of view of the Data 
Acquisition System (DAQ), the whole detector may be considered as the aggregation of 
synchronized data supplied by individual crystals, possibly disciplined by a global trigger primitive. 
Each crystal is composed of 36 segments and a central core contact, all individually readout. 
The data from the core contact are processed for event detection and hence, a level 1 trigger 
request or local trigger generation. The choice between the two behaviors is done upon 
configuration, the former corresponding to an effective way to reduce front-end data rates in cases 
where anyone of the stages of the readout chain is unable to perform at the actual data throughput.   
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2. The Front-end Model 
  
A columnar model of the data flow concerning each individual segment of a crystal can be 
represented as in fig. 1. This sort of digital pipe highlights the flow starting from the digitizer of a 
single channel down to the Pulse Shape Analysis farm where position estimation of gamma ray 
interactions is carried out. 
 

 
 

Fig. 1 – The AGATA readout column 

 
 
The model shows two types of trigger interactions with the flow: a local trigger signal generated by 
central core processing and, possibly, a global trigger L1 accept signal generated externally from a 
central trigger processor. To ease the solution of the problems posed by the different 
synchronization levels specified before, AGATA shares a global time reference supplied by a 
global trigger and synchronization control system (GTS) and distributed by means of a network of 
optical fibres to the front-end electronics of each crystal. Fig. 2 shows the aggregate model of a 
front-end system and its interface to the GTS. 
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Fig. 2 – Model of a detector channel 

 
 
The following functionalities will be described in terms of behaviour. 
 
1: Extraction of the physical signal from the sub-detector and transformation to digital data. 
 

The transformation includes any needed shaping or processing. If the detector is the central 
core contact of the crystal, the data are made available to the Trigger Primitive Generator 
(TPG). 

 
2: Delay on the data during the trigger level-1 latency. 

 
This delay can be implemented in various ways : storage with pointers management or a 
simple pipeline shifting synchronously with the global clock for example. The delay value will 
be the sum of the decision time of the trigger logic and the propagation time. Hence, the 
delay can vary depending on the location of the front-end. 

 
3: Data selection and tagging. 

 
On the result of level-1 trigger process, data corresponding to that event must be selected 
from the pipeline. A data frame (data recorded during several consecutive clock cycles) is to 
be considered and not a single data. Corresponding global clock and event numbers must be 
associated to those data to tag them. 

 
 
 
4: Derandomization. 
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Once selected by a level-1 accept, the frame is saved in a multi-event buffer. This buffer 
stage is needed to allow a frequency derandomization between the level-1 rate and the 
readout process. The size of the multi-event buffer has to be defined in order to guarantee 
the smallest buffer-overflow probability possible. A FIFO-like behavior is needed for this 
buffer. 

 
5: First level merge. 

 
A given number of derandomizer buffers is attached to a merge engine that will readout data 
associated to a particular event. The engine produces a so called "Front End Event". 

 
6: Front End Event formatting. 

 
The data format of the Front End Event must include the global clock counter and event 
numbers to allow later data misalignment search [1]. The presence of a Front End identifier 
could also be required. 

 
7: Transmission to FED 

 
The FE Event is then sent out to the Front-end driver (FED) via a data link. The media and 
protocol used for this link should be a DAQ standard. 

 
8: Monitoring of the derandomizer filling level 

 
If the readout scheme is such that every derandomizer has the same status at the same time 
(after readout completion), this case is simple and the solution is straightforward (see below). 
If the readout scheme is such that every derandomizer can have a different status (e.g. 
variable event size), warning or worst status must be included to the "Front End Event" for 
later processing at the FED level. 
 

9: Test facilities 
 
To have maximum efficiency in the problem detection, they have to be implemented as high 
as possible in the readout chain. 

 
10: Processing. 

 
Data processing (e.g. lossless compression) can also be needed in the front end. Location 
and exact functionality of the processing is to be defined. 
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3. GTS Functionalities 
 
From the logical description of the front-end operation given above it turns out that a certain 
number of global time referenced signals are needed. Among them: 
 

1. common clock 
2. global clock counter 
3. global event counter 
4. trigger controls: 

i. Throttling of the L1 validation signal 
ii. Fast commands (fast reset, initialization, etc.) 
iii. Fast monitoring feedback from the crystals 
iv. Calibration and test trigger sequence commands 
v. Monitor of dead time 

5. Trigger requests 
6. Error reports 

 
In AGATA, the transport medium of all these signals is shared by use of serial optical bidirectional 
links connecting the front-end electronics of each crystal with a central global trigger and 
synchronization control unit in a tree-like structure, thus actually merging together the three basic 
functionalities of synchronization distribution, global control and trigger processing. 
 
More in detail: 
 
1: Common clock 
 

This is a 100 MHz digital clock supplied by a central timing unit (possibly GPS disciplined) 
and used to clock the high speed optical transceivers reaching the front-end electronics of 
every crystal. At the crystal receiving side the clock is reconstructed and filtered for jitter. The 
clock signals of each crystal may be equalized for delay and phase, thus accounting for 
different fibre lengths and different crystal locations in the array. 

 
 
2: Global clock counter 
 

A 48 bit digital pattern used to tag event fragments before Front-end buffer formatting. The 
pattern is the actual count of the global clock. It will be used by PSA and global event 
builders to merge the event fragments in one single event. 

 
 
3: Global event counter 
 

A 16 bit digital pattern used to tag event fragments before Front-end buffer formatting. The 
pattern is the actual count of the L1 validations. 

 
 
4: Trigger controls 
 

The Trigger Control must guarantee that sub-systems are ready to receive every L1 Accept 
delivered. This is essential to prevent buffers overflows and/or trigger signals missed when 
the crystals are not ready to receive them. In either case, the consequence would be a loss 
of synchronization between event fragments. 
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Warning signals sent from the crystal  through the GTS network, indicating that some of its 
buffers are almost full, may be received centrally. However this feedback signal can take few 
microseconds to reach the Trigger Control, which meanwhile could have delivered a number 
of L1A signals that originate a buffer overflow. This problem is particularly acute in the front-
end derandomizers which have a small storage capacity. 
According to the front-end electronic logical model, the front-end derandomizers after the L1 
latency pipelines are the first devices to overflow when the L1A rate is too high. Space and 
power constraints in the front-ends imply small derandomizer depth and hence these queues 
are very sensitive to bursty L1A. In general, the derandomizers behave like a first-in-first-out 
queue: the input/output frequency is directly the L1A rate. The overflow probability is strongly 
dependent on the ratio between the service time and the buffer depth. The consequence 
would be of resetting the whole front-end electronics which would cause a severe loss of 
efficiency in the DAQ. All front-end derandomizers behave identically. Therefore, their 
occupancy depend only on the L1A rate and on the service time. A state machine receiving 
the L1A signals can emulate the de-randomizer behavior and determine its occupancy at 
each new L1A. If a new L1A is estimated to cause a de-randomizer overflow, this L1A is 
throttled. In general, it would be very difficult to guarantee that the state machine reproduces 
exactly the buffer status at every time. However in the present case the L1A accept signals 
are synchronous with the clock and the write and read latencies are measured in multiples of 
the clock period. It is this time quantization that makes the de-randomizer emulation really 
possible. A complementary solution to the same problem is to oblige the delivery of L1A 
signals to comply with a set of trigger rules. These rules take the general form ’no more than 
n L1A signals in a given time interval’. Suitable rules, inducing a negligible dead time, would 
minimize the buffer overflow probability. 

 
 
5: Trigger request 
 

The central core contact signal might be considered as the overlap of all the signals in the 
segments of a crystal; in fact a deposit of energy in any of the segment will induce a signal in 
the central core, thus acting as a sort of analog sum of single segment signals. Therefore, the 
central core can be processed for event localization in a crystal. Suitable algorithms for this 
task have been identified [] and tested. The outcome of the algorithm may issue a trigger 
request to the central trigger processor by asserting this signal which is transmitted via the 
high speed serial links of the GTS network upwards to the central trigger unit.  
All the trigger requests collected from the crystals at each global clock cycle form a pattern 
that can be processed centrally for multiplicity or coincidence with ancillary detectors. The 
result of this processing stage constitutes the L1 validation. 

 
 
6: Error reports 
  

Abnormal conditions as buffer overflows, local faults, built-in self tests, etc. can be reported 
centrally for proper corrective actions. 



 Draft version 1.2 – 24 October 2004  

M. Bellato – INFN Padova 9

 

4. Front-end Simulation 
 
The Front End System presents intrinsic inefficiencies by design, in the sense that all level-1 
triggers might not be processed. The two major causes of these inefficiencies are the Front End 
System dead time following a trigger, and the limited size of the Front End Channel derandomizing 
buffers. 
For the complete readout chain of AGATA, a maximum acceptable inefficiency has to be defined: a 
value in the range of a few percents at 1 MHz trigger rate has to be achieved. Unfortunately, this 
trigger rate is not known as an absolute worst case, hence, to have a good safety margin for 
system design, we should regard it as the variance of a Gaussian process and take the 6σ value 
as our absolute worst case. 
 

4.1 Front-end system dead time 
 
A dead time is induced after level-1 trigger reception by the hardware architecture of the Local 
Level Processing electronics. This dead time is due mainly to the time needed to read a frame out 
of the front-end fifo’s and to the time needed to sink the synchronization tags from the GTS 
interface mezzanine. As a consequence, triggers occurring during this period cannot be processed, 
and corresponding event data are lost. 
 
An estimation of the inefficiency induced by the Local Level Processing hardware can be 
calculated with the following assumptions. Let d be the dead time, r the trigger rate. If we consider 
a Poisson law for the trigger distribution, the probability of one event (at least) occurring during the 
dead time is: 
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assuming that rd is small relative to 1. 
 
Hence, at the level of each crystal, 1 microsecond of dead time after local trigger generation will 
account for 5% of local efficiency loss at 50 KHz trigger rate. Global system inefficiency due to 
hardware dead time is computed in the following way. Let’s remember how a global trigger is 
usually generated in AGATA: local triggers generated at the crystal level get routed to a central 
trigger processor which is configured for asserting a trigger validation whenever a programmable 
condition is met. The simplest of these conditions is a multiplicity, e.g. pretending that more than 
one (usually M = [2..30]) trigger requests are asserted in the same time window. 
It’s easy to realize that, at multiplicity M>1, dead time of one crystal electronics induces a dead 
time for the whole system. For sake of simplicity, let’s suppose M=2. An event firing crystals, say, 
no. 1 and 2 gets validated and those crystals enter a 1 microsecond dead time. Any subsequent 
event firing any two crystals will be validated only if crystals no.1 and 2 are not interested by the 
new event. The probability of the new event firing crystals no. 1 or 2 is computed by knowing the 
number of times that crystals no. 1 or 2 are present in all possible combinations without repetition 
of any two crystals out of 180 (this is the number of HPGe detectors foreseen for AGATA). 
Let’s take N = the total number of crystals, M = multiplicity: the total number T of combinations 
without repetition of any M crystals out of N is the well know formula: 
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The number of times K that one crystal is present in all possible combinations without repetition of 
any M crystals out of N is given by : 
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So, the probability of the new event firing a crystal that entered a dead time is given by: 
 

N
M

T
KMPd

2

=×=  

 
It’s to note that, already at multiplicity M=13, with N=180, it’s almost certain that a new event 
occurring less than one microsecond after the preceding will hit a crystal whose electronics will not 
catch it….. 
 
 

4.2 The Derandomizer Size 
 
The size allocated to the front-end derandomizing buffers is a crucial issue. On one hand, available 
space on silicon and power budget lead to minimize the size. On the other hand, data loss 
probability due to buffer overflow has to be minimized to avoid misalignment in the DAQ, thus 
inducing large inefficiencies caused by long recovery times. This constraint leads to maximize the 
derandomizer size. 
The model used for this study is mainly defined by 3 parameters: 

 the mean time between two triggers "t", i.e. the inverse of the trigger rate 
 the fifo’s service time "s", i.e. the minimum time between two consecutive read access to 

the fifo’s. 
 The fifo depth "d". This parameter is expressed in terms of events (a constant event size is 

assumed). 
With this model, P(n) , the probability of having n events waiting in the fifo is computed. P(n=d), is 
the probability for the fifo to be full and also the derandomizer inefficiency. 
 
To analyze the contribution of these parameters to the global system inefficiency a simulation 
environment has been setup. We made a faithful description of the Local Level Processing 
hardware and the GTS interface mezzanine operations by means of the SystemC hardware 
description language [ ]. Being both synchronous with the GTS distributed global clock, a cycle 
accurate description of the local trigger generation, GTS handshake mechanism, fifo’s storage and 
readout and trigger matching procedure has been easy to achieve and deploy.  
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4.3 The Simulation Environment 
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Fig. 3 – Top level view of the simulation environment 

 
Figure 3 shows the top level block diagram of the simulation environment. The front-end system is 
comprised of a GTS mezzanine interface, a primitive trigger generator which analyzes sampled 
data from central contact of each crystal for local trigger generation, a carrier box collecting data 
from twelve crystal segments and a readout bus to which a readout cpu and a global memory are 
connected. The model is sourced with real data taken from 24-fold and 36-fold segmented 
prototype crystals, illuminated with different radioactive sources. 
It is worth noting that the simulation environment is a coded implementation of the front-end model 
depicted in fig. 2. 
 

4.3.1 The carrier 
The carrier box has the complex structure shown in fig. 4: two mezzanines (M1 and M2) take care 
of computing the energy and storing the rising edge samples of each event from six crystal 
segments each. Upon request of the readout engine box, on a per event basis these data are 
stored in a dual port ram after being tagged with a timestamp and event number taken from the 
‘evcount_fifo’ and ‘tstamp_fifo’. A Direct Memory Access (DMA) controller box synchronizes with 
the Readout Engine box by means of two fifo’s (ro2dma and dma2ro fifo’s) and sinks event data 
from the dual port ram into its bus port.  
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Fig. 4 – Block diagram of the “Carrier” box of fig. 3. 

 
The mezzanines M1 and M2 are a six-fold instance of the block diagram of a single channel, 
shown in fig. 5. 
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Fig. 5 – Block diagram of the “Mezzanine” box of fig. 4. 

 

4.3.2 The Channel Structure 
At the heart of the simulation code is the channel structure, as shown in fig. 6. Samples from the 
segment contact enter both a delay line and a Moving Window Deconvolution (MWD) box that 
computes the energy of the pulse and stores the value in a fifo (en_fifo) for later readout. Upon 
arrival of a local trigger, a pulse controller box (pulse_cntr) moves a predefined number of samples 
from the delay line into an event fifo (ev_fifo), thus isolating the rising edge of the pulse.  
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Fig. 6 – The channel structure. 

 

 

 

4.3.3 Trigger Matching 
The arrival of a trigger validation instead enables the storage of the current GTS time into a 
timestamp fifo (tstamp_fifo) to be used by the trigger matching engine.  
The trigger matching engine is in charge of correlating the trigger validations stored in the 
tstamp_fifo with candidate local triggers that have triggered the storage of samples into the ev_fifo. 
In other words, trigger matching is a time match between a trigger validation time tag and the local 
trigger time tags themselves. The idea is shown in figure 7. 
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Fig. 7 – Trigger matching technique. 

 
Local triggers and subsequent trigger validations differ in time for a number of reasons. The most 
obvious is that the latters are the result of logical operations performed on the formers, so they are 
intrinsically time ordered. There is a constant time difference between the two due to hardware 
infrascture that transports local trigger signals to a central trigger processor for validation 
generation. There is also a variable time difference between the two due to the mechanism of local 
trigger generation which depends somehow on the amount of charge induced by gamma 
interaction in each single crystal. As a consequence, the trigger matching procedure must be done 
inside a window, the match window, as show in the following figure.   
 
 

 
 

Fig. 8 – Window based Trigger matching. 

 
At the time of a validation arrival (‘trigger input’ in fig. 8), from the current value of GTS clock a 
trigger latency value is subtracted. The result is an estimate of the time at which the candidate 
local triggers have happened. From that time on, for a period that equals the match window, all 
events whose time tags fall inside the window get validated and will be moved in the readout fifo. 
The events whose time tags fall before the time window can be discarded from the input fifo 
because they have no chance to be validated in future. Those events instead, with time tags that 
are younger than the match window will remain in place due to the possibility of being validated at 
a later time.  
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4.3.4 Simulation Results 

5. Global Timestamp Protocol 
 

To be filled … 
 

6. Global Trigger Algorithms 
 

To be filled … 
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7. Implementation 
 
AGATA GTS will have a tree topology, originating from the root node that will therefore act at the 
same time as the source of all global information (clock, timestamps, commands, L1 validations) 
and the sink of all trigger requests, fast monitoring signals and service requests coming from the 
crystals. 
 

 
 
 
Fig. 9 – GTS topology 

 
 
To solve the problems of building a bi-directional, high capacity and high speed tree network that 
drives hundreds of nodes displaced several tenths of meters apart, a certain number of 
technological issues must be addressed. Among them, the fan-out of a source synchronous 
transmission, noise immunity, low error rate and throughput. Modern serial transceivers, as used in 
commercial high speed telecom networks, can solve part of them. Simply stated, these devices 
basically transfer a digital pattern from one side of a transmission channel to the other (and 
viceversa) by serializing the pattern at a speed that equals the input clock frequency times the 
pattern width; the serialized pattern is then reconstructed identical at the receiving side of the 
transmission line by means of a serial to parallel conversion. AGATA GTS may greatly benefit of 
the technological solutions devoted to high speed serial transmissions, because, by exploiting the 
use of these components, the design can be kept simple yet adequate. The solution proposed is 
sketched in the following figure. 
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Fig. 10 – GTS technology and implementation 

 
The hierarchy is composed of five different parts: 
  

1. the root node 
2. the backplane 
3. the fanin-fanout nodes 
4. the fibre connections 
5. the mezzanine interface 

 
 

7.1 The root node 
 
This is the global time reference source and trigger processor. It might actually split in two boards, 
one for each direction of transmission. It sits in the central slot(s) of a (dual) star backplane and 
sources: 

a) global clock 
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b) global timestamps (global clock counter, global event counter) 
c) fast commands 

and sinks: 
a) trigger requests 
b) fast monitoring feedback signals 
c) error notifications 

A block diagram is shown in the next figure: 
 

 
 

Fig. 11 – Block diagram of GTS root node 

 

7.2 The backplane 
 
Advanced Telecommunication Architecture (ATCA) is a telecom specification (PICMG3.0) [2] 
aimed at standardizing the connectivity backplane for high speed, high throughput  computing and 
switching devices. The specification is geared towards serial switched technology and is of interest 
for AGATA GTS. Backplanes following ATCA specification have dual star (or full mesh) topology 
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with the two central slots as the centres of the two stars and 6+6 slots on the periphery (14 
peripheral slots is also an option). Each slot is connected to the centre by means of a certain 
number of matched impedance PCB traces (whose differential skew is less than 10ps) and routed 
to sustain a bit rate in excess of 3 gigabits/s per pair.  
 

7.3 The Fanin-fanout nodes 
 
These nodes act as splitting-combining nodes. When splitting, they replicate the information 
originated in the root node in each of the channels that they address; when combining, they merge 
the information originated in the crystals and send it to the root node. Each node is actually a board 
sitting in one of the 12 peripheral slots of the ATCA backplane and addresses 16 crystals. A block 
diagram of the board is show in the following figure: 

 
 

 

 
 
Fig. 12 – Block diagram of GTS fanin-fanout module 

 

7.4  The fibre connections 
 
Long distance transmission, noise immunity, galvanic isolation and low bit error rate (BER) will 
benefit from the use of serial optical transceivers and fibre connections between each channel of 
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the fanin-fanout nodes and the mezzanine interfaces that are hosted in the front-end electronics of 
each crystal. 
 
7.5 The mezzanine interface  
 
This is the block diagram of the GTS interface at the crystal level (or any ancillary detector). It 
decodes the information originated from the root node in one direction and encodes the information 
originated in the crystal in the opposite direction. The block diagram shown in the next figure is self 
explanatory.  
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Fig. 13 – Block diagram of GTS mezzanine interface 
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The form factor of the board has been chosen so that it can plug on a carrier board without custom 
PCB manufacturing as shown in fig. 14 
 

 
 

Fig. 14 – Common Mezzanine Card (CMC) form factor for the GTS interface 

74mm 

149mm 

149mm
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8. Phase equalization of GTS clocks 
 
The GTS clock, together with its associated timestamp, constitute the time reference for the whole 
AGATA system. In each crystal, a replica of the main GTS clock, sourced through a dedicated 
GTS interface mezzanine, feeds the analog-to-digital converters for digitization of segments 
signals from the charge preamplifiers. The same clock feeds also the communication devices that 
transfer the relevant information from the crystals up to the local level processing hardware. 
Moreover, as the whole data acquisition process relies totally on timestamps for the event building 
process, it is easy to understand that the GTS system must source replicas of its main clock and 
timestamp that are time aligned at each crystal level. Failing to do so would imply a number of 
consequences, the most obvious of which is the incorrect time tagging of event fragments and 
hence incorrect event building, but also potentially incorrect trigger processing. Hence, the problem 
of clock phase equalization is a crucial issue in AGATA. 
The reasons behind the misalignment of clock phases among different crystals are multiple. To cite 
a few there are: different PCB trace lengths, different fiber lengths, different propagation delays of 
active devices, different routes inside programmable logic devices, different process-voltage-
temperature corners of active devices, different equalization fifo’s depths of serializer-deserializer 
(serdes) devices used throughout the GTS system and many others. While a detailed model of 
clock phase mismatches is beyond the scope of this document, from what stated above it is 
obvious that we need to devise a method for diagnose and take care of phase misalignement. An 
analysis of the problem shows that the contributions to the phase mismatch can be divided in four 
categories:  
 
 

 Type of Contribution Reason 
1 Fixed  PCB trace lengths, propagation delays, … 

2 Static Equalization fifo’s of serdes devices 

3 Slowly changing Temperature, optical phase dispersion, … 

4 Rapidly changing Power supply ripple, … 

 
Table 2: Contributions to phase mismatch. 
 
While the contributions that fall in the first category can be measured once, those falling in the last 
three categories must be diagnosed at run-time and fixed with a fast and automated procedure, so 
that the contribution to the global system inefficiency is negligible. 
In AGATA, two different methods of phase equalization are currently under investigation:  
 

8.1 Continuous resets method 
 
The situation is the following: in the root node of the GTS tree the global clock and associated 
timestamp are generated and broadcasted to end nodes. In the end nodes the global clock is 
reconstructed and phase locked with the clock of the root node but with an unpredictable phase.  
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Fig. 15 – Root node – End node pair with loopback 

 
The main reason of phase uncertainty is contributions of type 2, e.g. due to the nature of clock data 
recovery circuit (CDR) of serdes devices. By putting a loopback in one end node, from the root 
node we measure the round trip time of a pulse and try to devise a method from which we can 
safely assume that the downlink and uplink channels are symmetric and hence the measurement 
(divided by two) equals the time of flight of a pulse from the root node to that end node. By 
repeating the measurement for each end node we will know how to setup programmable delay 
lines at the end nodes in order to reach phase equalization for all crystals. 
From laboratory test, we can basically assume that the phase of recovered clock at one end node 
is almost uniformly distributed in one clock period. If we take the phase of recovered clock as a 
random variable, its probability density function looks like in figure 16 
 
  
 
 
 
 
 
 
 
Fig. 16 – Ideal probability density function of recovered clock phase at the end node 

 
Now if we consider the transceiver pair with loopback, as in figure 15 and we consider the phase of 
the recovered clock at the root node as a random variable, we might assume that it is the sum of 
two identical variables (as long as contributions of type 1 to phase mismatch have been minimized 
by design).  
 

 
 

Fig. 17 – Global clock and recovered clock at the root node 

 
The channels are in fact mutually independent because the transmitter clock is independent from 
the recovered clock and viceversa, so the probability density function should look like: 
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Fig. 18 – Ideal probability density function of recovered clock phase at the root node 

 
 
In order to obtain the single channel latency dividing the total round trip time (RTT) by two, we 
have to look for a situation of maximum symmetry between the channels. The idea is to perform 
several reset-and-measure cycles until the RTT measure is close to the expected maximum or 
minimum. When this happens one can safely assume that the channels times of flight are 
respectively both close to their maximum or minimum and we can divide by two the RTT value to 
obtain the individual channel latency. 
 

8.1.1 Test results  
 
The test setup is illustrated in the following figure. 
 
 

 
 

Fig. 19 – The test stand for the continous resets method. 
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A data pattern P1 is injected at the root node in the downlink. At the end node the same pattern 
(P2) is recovered from the serial stream and its time of flight is measured by means of an 
oscilloscope (triggered by the time of occurrence of P1). The pattern is loopbacked towards the 
root node, recovered (P3) and its time of flight measured in the same way. In figure 20 the latency 
distributions of the downlink (TD) and uplink (TU) in a clock cycle are reported. In figure 21 the 
latency distribution of the loop (TL) in a clock cycle is reported. 
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Fig. 20 – Latency distribution of downlink (TD – upper) and uplink (TU – lower). 
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Fig. 21 – Latency distribution of the loop (TL). 
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By defining the degree of asymmetry as: 
 

)(10 ns
TUTD

Asymmetry
−

=  

 
one can plot the degree of asymmetry of the loop versus the global latency as in figure 22: 
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Fig. 22 – Loop asymmetry versus global latency. 

 
The measurements shown in figure 22 have been obtained by performing more than 11.000 reset-
and-measure cycles on the test stand of figure 19 with an automated procedure. This picture 
deserves some useful comments: 

 Two minima of asymmetry are evident at the extremes of the global latency interval 
[1677..1696] ns. This means that, at those minima (which correspond respectively to the 
global minimum and maximum of the loop latency) the downlink and uplink latency are 
almost equal and the two channels (uplink and downlink) are symmetric. Hence, we can 
estimate the end node clock phase with a measurement procedure performed at the root 
node. 

 The resolution of the measurements is 500 ps,  which corresponds to the clock cycle of the 
serial stream. 

 There is a certain number of points outside the [1677..1696] ns interval. These points are 
due to computation errors in the automation procedure (less than one hundred out of more 
than eleven thousands). 

 There is a pedestal in the plot greater than zero, e.g. the minima of asymmetry at the 
extremes of the interval are not zero. In other words there is a fixed contribution to 
asymmetry, e.g. a systematic error due to contribution of type 1 (PCB traces and cable 
mismatches, propagation delays impairments, impedance mismatches, etc.). This type of 
contribution can easily be measured from a plot like the one in fig. 22. Once subtracted, the 
plot in fig. 22 becomes a perfect triangle and the minima at the extremes of the interval 
become global minima.  

Due to the nature of our test stand, the measurements shown in fig. 22 took more than two hours 
to be performed. While an investigation is currently under way to speed up the measurement 
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process, it is evident that it is in the nature of the method itself to perform repetitive resets of 
serdes devices until a preferred latency is measured. That is, the method can be time consuming 
because we cannot foresee the time it takes to converge. For this reason it is not obvious that it 
might be used online, for periodic calibrations of the whole GTS distribution tree at beam time. 
 

8.2 Direct Measurement 

8.2.2 Test Results 
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Appendix A. GTS Mezzanine Interface Pin-out 
 
The GTS mezzanine interface pin-out is specified as: 
 

Name Direction No. of bits Description 

Clock100 Out 1 Global clock  

Clock100des Out 1 Global clock phase adjustable 

Timestamp Out 48 Global clock counter 

Ev_counter Out 16 Event counter 

Scl In 1 I2C interface 

Sda In/Out 1 I2C interface 

Trigger_valid Out 1 Level 1 trigger validation  

Trigger_req In 1 Trigger Request 

EvCnt_str Out 1 Event Counter strobe 

BrdCst_in Out 8 Broadcast Command bus from root node 

BrdCst_in_str Out 1 Broadcast bus strobe 

BrdCst_out In 8 Broadcast Command bus towards root node 

BrdCst_out_str In 1 Broadcast bus strobe 

Error Out 1 Transmission error 

Master_reset In 1 Mezzanine reset 

Ethernet[0-3] In/Out 4 Ethernet connection 
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Appendix B. Costs 

B.1 Single Crystal prototype costs. 
 

For single crystal prototype operation only 1 GTS Mezzanine card (working in 
emulation mode) is needed. GTS Mezzanine costs are detailed in the Pre-Processing 
Hardware Specs. [ ] 

 

B.2 Demonstrator costs. 
 

For demonstrator operation (15 crystals) the following items are needed: 
 

• 15 Mezzanine interfaces (costs included in the Pre-processing Hardware Specs 
[ ]) 

• 1 Fanin-fanout board (16 channels) 
• 1 Root Node (possibly splitted in two – see before) 
• 1 ATCA crate 
 

Root node(s) Qty  Unit price Cost  
Pcb Layout 2 €5000 €10000 
Pcb 2 €1000 €2000 
VirtexII pro 2 €2000 €4000 
Memory 2 €10 €20 
Flash mem 2 €100 €200 
LVDS serdes 24 €20 €480 
Power supply 2 €100 €200 
Connectors  €300 €600 
PLL 2 €120 €240 
Misc 2 €300 €600 
Total   €18400 

 
 

Fanin-Fanout Qty  Unit price Cost  
Pcb Layout 1 €5000 €5000 
Pcb 1 €1000 €1000 
VirtexII pro 1 €2000 €2000 
VirtexII pro V70 2 €500 €1000 
Memory 1 €10 €10 
Flash mem 1 €100 €100 
Optical Transceivers 16 €250 €4000 
Power supply 1 €100 €200 
Connectors  €300 €300 
PLL 2 €120 €240 
Misc 1 €300 €300 
Total   €14150 
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Assuming that, at the prototyping stage, two runs are needed to obtain a working system, 
then the costs for hardware for the demonstrator are (€18400 + €14150) X 2 = €65100 for 
the boards and €20000 for one ATCA crate. In total €85100. 
 
 

Instrumentation & 
Software 

Qty  Price 

TDR test Jig 1 €4000 
Differential Probe 1 €4000 
DSO 4GHZ 1 €45000 
2nd ATCA crate 1 €20000 
Optical Power Meter 1 €2000 
ATCA extender 1 €2000 
Xilinx Dev Kit 1 €5000 
Xilinx ISE 1 €500/year 
Synplify Pro 1 €1000/year
VisualHDL 1 €2000/year
Synopsys 1 €2000/year
Total  €87500 

 
NRE costs for Xilinx IP Cores are detailed in the Pre-Processing Hardware Specs.  
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Appendix C. Timescale and manpower 
 
Timescale and manpower for the GTS Mezzanine are detailed in the Pre-Processing Hardware 
Specs [1]. It is reported here for sake of completeness: 
 

C.1 GTS interface mezzanine 
 

Task Time 
(months) 

Manpower 
(1 man) 

PCB layout & Assembly 6 1 
Testing   
FPGA development 9 1 
Software   
   
Total 15 1 

 
 
For the root node and fanin-fanout boards the following figures hold: 
 

C.2 Root Node 
 
 

Task Time 
(months) 

Manpower 
(1 man) 

PCB layout & Assembly 4 1 
Testing 1 1 
FPGA development 12 1 
Software 7 1 
   
Total 24 1 

 
 

C.3 Fanin-fanout Node 
 
 

Task Time 
(months) 

Manpower 
(1 man) 

PCB layout & Assembly 4 1 
Testing 1 1 
FPGA development 12 1 
Software 7 1 
   
Total 24 1 

 


