
 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 1

AGATA Global Trigger and Synchronization Hardware

1. Introduction..3

2. The Front-end Model...4

3. GTS Functionalities ...7

4. Front-end Simulation...9
4.1 Front-end system dead time ... 9
4.2 The Derandomizer Size..10
4.3 The Simulation Environment..11

4.3.1 The carrier...11
4.3.2 The Channel Structure...13
4.3.3 Trigger Matching..14
4.3.4 Simulation Results ..16

5. Global Timestamp Protocol ..16

6. Global Trigger Algorithms..16

7. Implementation ..17
7.1 The root node..18
7.2 The backplane...19
7.3 The Fanin-fanout nodes...20
7.4 The fibre connections..20
7.5 The mezzanine interface ..21

8. Phase equalization of GTS clocks ...23
8.1 Continuous resets method ...23

8.1.1 Test results...25
8.2 Direct Measurement...28

8.2.2 Test Results..28
9. References ...29

10. Revision History ...29

Appendix A. GTS Mezzanine Interface Pin-out ...30

Appendix B. Costs ..31
B.1 Single Crystal prototype costs. ...31
B.2 Demonstrator costs. ...31

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 2

Appendix C. Timescale and manpower ...33
C.1 GTS interface mezzanine..33
C.2 Root Node...33
C.3 Fanin-fanout Node...33

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 3

1. Introduction

Data synchronization is an important aspect in the operation of the trigger and readout systems of
the AGATA experiment. A high increase in efficiency with respect to current spectrometers is
expected in AGATA by means of online gamma ray tracking and pulse shape analysis (PSA).
Tracking and PSA require the concurrent digitization of preamplifier signals of the 36 fold
segmented Ge crystals composing the array. Therefore, the design of the front-end readout and
level-1 (L1) trigger in AGATA follows a synchronous pipeline model: the detector data are stored
in pipeline buffers at the global AGATA frequency, waiting the global L1 decision. The L1 latency
must be constant and shall match the pipeline buffer length. The whole system behaves
synchronously and synchronization at different levels and in different contexts has to be achieved
and monitored for proper operation of the system. In order to fix definitions, we list in Table 1 the
various synchronization types that we refer to.

Type Description

Sampling Synchronization Synchronization of the detector signals with the
clock phase

Serial Link Synchronization Recovery of parallel data words from the serial bit
stream.

Trigger Requests Alignment Alignment of trigger data at the input of the trigger
pipeline processor

L1 Validations
Synchronization

Synchronization of L1A signal with data in the
readout pipelines

Event Synchronization Assignment of global clock and event number to
data fragments in the DAQ path

Table 1: Synchronization types.

In AGATA each crystal is considered as a separate entity and from the point of view of the Data
Acquisition System (DAQ), the whole detector may be considered as the aggregation of
synchronized data supplied by individual crystals, possibly disciplined by a global trigger primitive.
Each crystal is composed of 36 segments and a central core contact, all individually readout.
The data from the core contact are processed for event detection and hence, a level 1 trigger
request or local trigger generation. The choice between the two behaviors is done upon
configuration, the former corresponding to an effective way to reduce front-end data rates in cases
where anyone of the stages of the readout chain is unable to perform at the actual data throughput.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 4

2. The Front-end Model

A columnar model of the data flow concerning each individual segment of a crystal can be
represented as in fig. 1. This sort of digital pipe highlights the flow starting from the digitizer of a
single channel down to the Pulse Shape Analysis farm where position estimation of gamma ray
interactions is carried out.

Fig. 1 – The AGATA readout column

The model shows two types of trigger interactions with the flow: a local trigger signal generated by
central core processing and, possibly, a global trigger L1 accept signal generated externally from a
central trigger processor. To ease the solution of the problems posed by the different
synchronization levels specified before, AGATA shares a global time reference supplied by a
global trigger and synchronization control system (GTS) and distributed by means of a network of
optical fibres to the front-end electronics of each crystal. Fig. 2 shows the aggregate model of a
front-end system and its interface to the GTS.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 5

Fig. 2 – Model of a detector channel

The following functionalities will be described in terms of behaviour.

1: Extraction of the physical signal from the sub-detector and transformation to digital data.

The transformation includes any needed shaping or processing. If the detector is the central
core contact of the crystal, the data are made available to the Trigger Primitive Generator
(TPG).

2: Delay on the data during the trigger level-1 latency.

This delay can be implemented in various ways : storage with pointers management or a
simple pipeline shifting synchronously with the global clock for example. The delay value will
be the sum of the decision time of the trigger logic and the propagation time. Hence, the
delay can vary depending on the location of the front-end.

3: Data selection and tagging.

On the result of level-1 trigger process, data corresponding to that event must be selected
from the pipeline. A data frame (data recorded during several consecutive clock cycles) is to
be considered and not a single data. Corresponding global clock and event numbers must be
associated to those data to tag them.

4: Derandomization.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 6

Once selected by a level-1 accept, the frame is saved in a multi-event buffer. This buffer
stage is needed to allow a frequency derandomization between the level-1 rate and the
readout process. The size of the multi-event buffer has to be defined in order to guarantee
the smallest buffer-overflow probability possible. A FIFO-like behavior is needed for this
buffer.

5: First level merge.

A given number of derandomizer buffers is attached to a merge engine that will readout data
associated to a particular event. The engine produces a so called "Front End Event".

6: Front End Event formatting.

The data format of the Front End Event must include the global clock counter and event
numbers to allow later data misalignment search [1]. The presence of a Front End identifier
could also be required.

7: Transmission to FED

The FE Event is then sent out to the Front-end driver (FED) via a data link. The media and
protocol used for this link should be a DAQ standard.

8: Monitoring of the derandomizer filling level

If the readout scheme is such that every derandomizer has the same status at the same time
(after readout completion), this case is simple and the solution is straightforward (see below).
If the readout scheme is such that every derandomizer can have a different status (e.g.
variable event size), warning or worst status must be included to the "Front End Event" for
later processing at the FED level.

9: Test facilities

To have maximum efficiency in the problem detection, they have to be implemented as high
as possible in the readout chain.

10: Processing.

Data processing (e.g. lossless compression) can also be needed in the front end. Location
and exact functionality of the processing is to be defined.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 7

3. GTS Functionalities

From the logical description of the front-end operation given above it turns out that a certain
number of global time referenced signals are needed. Among them:

1. common clock
2. global clock counter
3. global event counter
4. trigger controls:

i. Throttling of the L1 validation signal
ii. Fast commands (fast reset, initialization, etc.)
iii. Fast monitoring feedback from the crystals
iv. Calibration and test trigger sequence commands
v. Monitor of dead time

5. Trigger requests
6. Error reports

In AGATA, the transport medium of all these signals is shared by use of serial optical bidirectional
links connecting the front-end electronics of each crystal with a central global trigger and
synchronization control unit in a tree-like structure, thus actually merging together the three basic
functionalities of synchronization distribution, global control and trigger processing.

More in detail:

1: Common clock

This is a 100 MHz digital clock supplied by a central timing unit (possibly GPS disciplined)
and used to clock the high speed optical transceivers reaching the front-end electronics of
every crystal. At the crystal receiving side the clock is reconstructed and filtered for jitter. The
clock signals of each crystal may be equalized for delay and phase, thus accounting for
different fibre lengths and different crystal locations in the array.

2: Global clock counter

A 48 bit digital pattern used to tag event fragments before Front-end buffer formatting. The
pattern is the actual count of the global clock. It will be used by PSA and global event
builders to merge the event fragments in one single event.

3: Global event counter

A 16 bit digital pattern used to tag event fragments before Front-end buffer formatting. The
pattern is the actual count of the L1 validations.

4: Trigger controls

The Trigger Control must guarantee that sub-systems are ready to receive every L1 Accept
delivered. This is essential to prevent buffers overflows and/or trigger signals missed when
the crystals are not ready to receive them. In either case, the consequence would be a loss
of synchronization between event fragments.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 8

Warning signals sent from the crystal through the GTS network, indicating that some of its
buffers are almost full, may be received centrally. However this feedback signal can take few
microseconds to reach the Trigger Control, which meanwhile could have delivered a number
of L1A signals that originate a buffer overflow. This problem is particularly acute in the front-
end derandomizers which have a small storage capacity.
According to the front-end electronic logical model, the front-end derandomizers after the L1
latency pipelines are the first devices to overflow when the L1A rate is too high. Space and
power constraints in the front-ends imply small derandomizer depth and hence these queues
are very sensitive to bursty L1A. In general, the derandomizers behave like a first-in-first-out
queue: the input/output frequency is directly the L1A rate. The overflow probability is strongly
dependent on the ratio between the service time and the buffer depth. The consequence
would be of resetting the whole front-end electronics which would cause a severe loss of
efficiency in the DAQ. All front-end derandomizers behave identically. Therefore, their
occupancy depend only on the L1A rate and on the service time. A state machine receiving
the L1A signals can emulate the de-randomizer behavior and determine its occupancy at
each new L1A. If a new L1A is estimated to cause a de-randomizer overflow, this L1A is
throttled. In general, it would be very difficult to guarantee that the state machine reproduces
exactly the buffer status at every time. However in the present case the L1A accept signals
are synchronous with the clock and the write and read latencies are measured in multiples of
the clock period. It is this time quantization that makes the de-randomizer emulation really
possible. A complementary solution to the same problem is to oblige the delivery of L1A
signals to comply with a set of trigger rules. These rules take the general form ’no more than
n L1A signals in a given time interval’. Suitable rules, inducing a negligible dead time, would
minimize the buffer overflow probability.

5: Trigger request

The central core contact signal might be considered as the overlap of all the signals in the
segments of a crystal; in fact a deposit of energy in any of the segment will induce a signal in
the central core, thus acting as a sort of analog sum of single segment signals. Therefore, the
central core can be processed for event localization in a crystal. Suitable algorithms for this
task have been identified [] and tested. The outcome of the algorithm may issue a trigger
request to the central trigger processor by asserting this signal which is transmitted via the
high speed serial links of the GTS network upwards to the central trigger unit.
All the trigger requests collected from the crystals at each global clock cycle form a pattern
that can be processed centrally for multiplicity or coincidence with ancillary detectors. The
result of this processing stage constitutes the L1 validation.

6: Error reports

Abnormal conditions as buffer overflows, local faults, built-in self tests, etc. can be reported
centrally for proper corrective actions.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 9

4. Front-end Simulation

The Front End System presents intrinsic inefficiencies by design, in the sense that all level-1
triggers might not be processed. The two major causes of these inefficiencies are the Front End
System dead time following a trigger, and the limited size of the Front End Channel derandomizing
buffers.
For the complete readout chain of AGATA, a maximum acceptable inefficiency has to be defined: a
value in the range of a few percents at 1 MHz trigger rate has to be achieved. Unfortunately, this
trigger rate is not known as an absolute worst case, hence, to have a good safety margin for
system design, we should regard it as the variance of a Gaussian process and take the 6σ value
as our absolute worst case.

4.1 Front-end system dead time

A dead time is induced after level-1 trigger reception by the hardware architecture of the Local
Level Processing electronics. This dead time is due mainly to the time needed to read a frame out
of the front-end fifo’s and to the time needed to sink the synchronization tags from the GTS
interface mezzanine. As a consequence, triggers occurring during this period cannot be processed,
and corresponding event data are lost.

An estimation of the inefficiency induced by the Local Level Processing hardware can be
calculated with the following assumptions. Let d be the dead time, r the trigger rate. If we consider
a Poisson law for the trigger distribution, the probability of one event (at least) occurring during the
dead time is:

() rderdxeP rdrd
l ≈−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− 1

!0
1

0

assuming that rd is small relative to 1.

Hence, at the level of each crystal, 1 microsecond of dead time after local trigger generation will
account for 5% of local efficiency loss at 50 KHz trigger rate. Global system inefficiency due to
hardware dead time is computed in the following way. Let’s remember how a global trigger is
usually generated in AGATA: local triggers generated at the crystal level get routed to a central
trigger processor which is configured for asserting a trigger validation whenever a programmable
condition is met. The simplest of these conditions is a multiplicity, e.g. pretending that more than
one (usually M = [2..30]) trigger requests are asserted in the same time window.
It’s easy to realize that, at multiplicity M>1, dead time of one crystal electronics induces a dead
time for the whole system. For sake of simplicity, let’s suppose M=2. An event firing crystals, say,
no. 1 and 2 gets validated and those crystals enter a 1 microsecond dead time. Any subsequent
event firing any two crystals will be validated only if crystals no.1 and 2 are not interested by the
new event. The probability of the new event firing crystals no. 1 or 2 is computed by knowing the
number of times that crystals no. 1 or 2 are present in all possible combinations without repetition
of any two crystals out of 180 (this is the number of HPGe detectors foreseen for AGATA).
Let’s take N = the total number of crystals, M = multiplicity: the total number T of combinations
without repetition of any M crystals out of N is the well know formula:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

=
!!

!
MNM

NT

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 10

The number of times K that one crystal is present in all possible combinations without repetition of
any M crystals out of N is given by :

)!()!1(
)!1(

MNM
N

M
N
TK

−×−
−

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

So, the probability of the new event firing a crystal that entered a dead time is given by:

N
M

T
KMPd

2

=×=

It’s to note that, already at multiplicity M=13, with N=180, it’s almost certain that a new event
occurring less than one microsecond after the preceding will hit a crystal whose electronics will not
catch it…..

4.2 The Derandomizer Size

The size allocated to the front-end derandomizing buffers is a crucial issue. On one hand, available
space on silicon and power budget lead to minimize the size. On the other hand, data loss
probability due to buffer overflow has to be minimized to avoid misalignment in the DAQ, thus
inducing large inefficiencies caused by long recovery times. This constraint leads to maximize the
derandomizer size.
The model used for this study is mainly defined by 3 parameters:

 the mean time between two triggers "t", i.e. the inverse of the trigger rate
 the fifo’s service time "s", i.e. the minimum time between two consecutive read access to

the fifo’s.
 The fifo depth "d". This parameter is expressed in terms of events (a constant event size is

assumed).
With this model, P(n) , the probability of having n events waiting in the fifo is computed. P(n=d), is
the probability for the fifo to be full and also the derandomizer inefficiency.

To analyze the contribution of these parameters to the global system inefficiency a simulation
environment has been setup. We made a faithful description of the Local Level Processing
hardware and the GTS interface mezzanine operations by means of the SystemC hardware
description language []. Being both synchronous with the GTS distributed global clock, a cycle
accurate description of the local trigger generation, GTS handshake mechanism, fifo’s storage and
readout and trigger matching procedure has been easy to achieve and deploy.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 11

4.3 The Simulation Environment

CARRIER

SCC

GTS_IF

ARBITERFAST_MEM

OUT_BUS

CPU

fiber_in (15:0)fiber_in (15:0)

fiber_out (15:0)fiber_out (15:0) timestamp (47:0)timestamp (47:0)

cmd (7:0)cmd (7:0)

L1AL1A

backpressurebackpressure

trigger_ch (13:0)trigger_ch (13:0)

trigger_requesttrigger_request

ch
0

(1
3:

0)
ch

0
(1

3:
0)

event_num (23:0)event_num (23:0)

ch
1

(1
3:

0)
ch

1
(1

3:
0)

ch
2

(1
3:

0)
ch

2
(1

3:
0)

ch
3

(1
3:

0)
ch

3
(1

3:
0)

bu
s_

po
rt

bu
s_

po
rt

Trigger Primitive Generator Frontend System

GTS Interface

rst

rst

rst

rst

trigger_thresh (11:0)trigger_thresh (11:0) local_triggerlocal_trigger
hold_time (9:0)hold_time (9:0)

gclk

gclk

gclk

gclk

gclk

gclk

L1A_latency (15:0)L1A_latency (15:0)

matching_window (15:0)matching_window (15:0)

slave_port_Mslave_port_M arbiter_portarbiter_port

spy (15:0)spy (15:0)

ch
7

(1
3:

0)
ch

7
(1

3:
0)

ch
6

(1
3:

0)
ch

6
(1

3:
0)

ch
5

(1
3:

0)
ch

5
(1

3:
0)

ch
4

(1
3:

0)
ch

4
(1

3:
0)

ch
11

 (
13

:0
)

ch
11

 (
13

:0
)

ch
10

 (
13

:0
)

ch
10

 (
13

:0
)

ch
9

(1
3:

0)
ch

9
(1

3:
0)

ch
8

(1
3:

0)
ch

8
(1

3:
0)

cpu_portcpu_port

bus_clk
bus_clk

bus_clk

bus_clk

bus_clk
bus_clk

bus_clk

bus_clk

Fig. 3 – Top level view of the simulation environment

Figure 3 shows the top level block diagram of the simulation environment. The front-end system is
comprised of a GTS mezzanine interface, a primitive trigger generator which analyzes sampled
data from central contact of each crystal for local trigger generation, a carrier box collecting data
from twelve crystal segments and a readout bus to which a readout cpu and a global memory are
connected. The model is sourced with real data taken from 24-fold and 36-fold segmented
prototype crystals, illuminated with different radioactive sources.
It is worth noting that the simulation environment is a coded implementation of the front-end model
depicted in fig. 2.

4.3.1 The carrier
The carrier box has the complex structure shown in fig. 4: two mezzanines (M1 and M2) take care
of computing the energy and storing the rising edge samples of each event from six crystal
segments each. Upon request of the readout engine box, on a per event basis these data are
stored in a dual port ram after being tagged with a timestamp and event number taken from the
‘evcount_fifo’ and ‘tstamp_fifo’. A Direct Memory Access (DMA) controller box synchronizes with
the Readout Engine box by means of two fifo’s (ro2dma and dma2ro fifo’s) and sinks event data
from the dual port ram into its bus port.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 12

ev_energy_re1

ev_energy_re2

ev_energy_re3

ev_energy_re4

ev_energy_re5

ev_energy_re6

ev_pulse_re1

ev_pulse_re2

ev_pulse_re3

ev_pulse_re4

ev_pulse_re5

ev_pulse_re6

ev_energy1

ev_energy2

ev_energy3

ev_energy4

ev_energy5

ev_energy6

ev_pulse1

ev_pulse2

ev_pulse3

ev_pulse4

ev_pulse5

ev_pulse6

ch1

ch2

ch3

ch4

ch5

ch6

gc
lk

L1
A

L1
A

_l
at

en
cy

lo
ca

l_
tr

ig
ge

r

m
at

ch
in

g_
w

in
do

w

rst

tim
es

ta
m

p

M1

ev_energy_re1

ev_energy_re2

ev_energy_re3

ev_energy_re4

ev_energy_re5

ev_energy_re6

ev_pulse_re1

ev_pulse_re2

ev_pulse_re3

ev_pulse_re4

ev_pulse_re5

ev_pulse_re6

ev_energy1

ev_energy2

ev_energy3

ev_energy4

ev_energy5

ev_energy6

ev_pulse1

ev_pulse2

ev_pulse3

ev_pulse4

ev_pulse5

ev_pulse6

ch1

ch2

ch3

ch4

ch5

ch6

gc
lk

L1
A

L1
A

_l
at

en
cy

lo
ca

l_
tr

ig
ge

r

m
at

ch
in

g_
w

in
do

w

rst

tim
es

ta
m

p

M2

tstamp_fifoevcount_fifo

dma2ro_fifo

ro2dma_fifo

DPRAM

READOUT_ENGINE

DMA_CONTROLLER

cmd (7:0)cmd (7:0)

ch
1

(1
3:

0)
ch

1
(1

3:
0)

ch
2

(1
3:

0)
ch

2
(1

3:
0)

ch
3

(1
3:

0)
ch

3
(1

3:
0)

ch
0

(1
3:

0)
ch

0
(1

3:
0)

bus_portbus_port

backpressurebackpressure

ev
en

t_
nu

m
 (

23
:0

)
ev

en
t_

nu
m

 (
23

:0
)

spy (15:0)spy (15:0)

ch
7

(1
3:

0)
ch

7
(1

3:
0)

ch
6

(1
3:

0)
ch

6
(1

3:
0)

ch
5

(1
3:

0)
ch

5
(1

3:
0)

ch
4

(1
3:

0)
ch

4
(1

3:
0)

ch
11

 (
13

:0
)

ch
11

 (
13

:0
)

ch
10

 (
13

:0
)

ch
10

 (
13

:0
)

ch
9

(1
3:

0)
ch

9
(1

3:
0)

ch
8

(1
3:

0)
ch

8
(1

3:
0)

rstrst rstrst

L1
A

L1
A L1

A

L1
A

L1
A

_l
at

en
cy

 (
15

:0
)

L1
A

_l
at

en
cy

 (
15

:0
)

L1
A

_l
at

en
cy

 (
15

:0
)

L1
A

_l
at

en
cy

 (
15

:0
)

lo
ca

l_
tr

ig
ge

r

lo
ca

l_
tr

ig
ge

r

lo
ca

l_
tr

ig
ge

r

lo
ca

l_
tr

ig
ge

r

m
at

ch
in

g_
w

in
do

w
 (

15
:0

)

m
at

ch
in

g_
w

in
do

w
 (

15
:0

)

m
at

ch
in

g_
w

in
do

w
 (

15
:0

)

m
at

ch
in

g_
w

in
do

w
 (

15
:0

)

tim
es

ta
m

p
(4

7:
0)

tim
es

ta
m

p
(4

7:
0)

tim
es

ta
m

p
(4

7:
0)

tim
es

ta
m

p
(4

7:
0)

tim
es

ta
m

p
(4

7:
0)

tim
es

ta
m

p
(4

7:
0)

addr_inaddr_in

en
er

gy
_c

h0

energy_ch0

en
er

gy
_c

h0

energy_ch0

en
er

gy
_c

h1

energy_ch1

en
er

gy
_c

h1

energy_ch1

en
er

gy
_c

h2

energy_ch2

en
er

gy
_c

h2

energy_ch2

en
er

gy
_c

h3

energy_ch3

en
er

gy
_c

h3

energy_ch3

en
er

gy
_c

h4

energy_ch4

en
er

gy
_c

h4

energy_ch4

en
er

gy
_c

h5

energy_ch5

en
er

gy
_c

h5

energy_ch5

en
er

gy
_c

h6

energy_ch6

en
er

gy
_c

h6

energy_ch6

en
er

gy
_c

h7

energy_ch7

en
er

gy
_c

h7

energy_ch7

en
er

gy
_c

h8

energy_ch8

en
er

gy
_c

h8

energy_ch8

en
er

gy
_c

h9

energy_ch9

en
er

gy
_c

h9

energy_ch9

en
er

gy
_c

h1
0

energy_ch10

en
er

gy
_c

h1
0

energy_ch10

en
er

gy
_c

h1
1

energy_ch11

en
er

gy
_c

h1
1

energy_ch11

pu
ls

e_
ch

0

pulse_ch0

pu
ls

e_
ch

0

pulse_ch0

pu
ls

e_
ch

1

pulse_ch1

pu
ls

e_
ch

1

pulse_ch1

pu
ls

e_
ch

2

pulse_ch2

pu
ls

e_
ch

2

pulse_ch2

pu
ls

e_
ch

3

pulse_ch3

pu
ls

e_
ch

3

pulse_ch3

pu
ls

e_
ch

4

pulse_ch4

pu
ls

e_
ch

4

pulse_ch4

pu
ls

e_
ch

5

pulse_ch5

pu
ls

e_
ch

5

pulse_ch5

pu
ls

e_
ch

6

pulse_ch6

pu
ls

e_
ch

6

pulse_ch6

pu
ls

e_
ch

7

pulse_ch7

pu
ls

e_
ch

7

pulse_ch7

pu
ls

e_
ch

8

pulse_ch8

pu
ls

e_
ch

8

pulse_ch8

pu
ls

e_
ch

9

pulse_ch9

pu
ls

e_
ch

9

pulse_ch9

pu
ls

e_
ch

10

pulse_ch10

pu
ls

e_
ch

10

pulse_ch10

pu
ls

e_
ch

11

pulse_ch11

pu
ls

e_
ch

11

pulse_ch11

pu
ls

e_
re

10

pulse_re10

pu
ls

e_
re

10

pulse_re10

pu
ls

e_
re

9

pulse_re9

pu
ls

e_
re

9

pulse_re9

pu
ls

e_
re

8

pulse_re8

pu
ls

e_
re

8

pulse_re8

pu
ls

e_
re

7

pulse_re7

pu
ls

e_
re

7

pulse_re7

pu
ls

e_
re

6

pulse_re6

pu
ls

e_
re

6

pulse_re6

pu
ls

e_
re

5

pulse_re5

pu
ls

e_
re

5

pulse_re5

pu
ls

e_
re

4

pulse_re4

pu
ls

e_
re

4

pulse_re4

pu
ls

e_
re

3

pulse_re3

pu
ls

e_
re

3

pulse_re3

pu
ls

e_
re

2

pulse_re2

pu
ls

e_
re

2

pulse_re2

pu
ls

e_
re

1

pulse_re1

pu
ls

e_
re

1

pulse_re1

pu
ls

e_
re

0

pulse_re0

pu
ls

e_
re

0

pulse_re0

en
er

gy
_r

e1
1

energy_re11

en
er

gy
_r

e1
1

energy_re11

en
er

gy
_r

e1
0

energy_re10

en
er

gy
_r

e1
0

energy_re10

en
er

gy
_r

e9

energy_re9

en
er

gy
_r

e9

energy_re9

en
er

gy
_r

e8

energy_re8

en
er

gy
_r

e8

energy_re8

en
er

gy
_r

e7

energy_re7

en
er

gy
_r

e7

energy_re7

en
er

gy
_r

e6

energy_re6

en
er

gy
_r

e6

energy_re6

en
er

gy
_r

e5

energy_re5

en
er

gy
_r

e5

energy_re5

en
er

gy
_r

e4

energy_re4

en
er

gy
_r

e4

energy_re4

en
er

gy
_r

e3

energy_re3

en
er

gy
_r

e3

energy_re3

en
er

gy
_r

e2

energy_re2

en
er

gy
_r

e2

energy_re2

en
er

gy
_r

e1

energy_re1

en
er

gy
_r

e1

energy_re1

en
er

gy
_r

e0

energy_re0

en
er

gy
_r

e0

energy_re0

pu
ls

e_
re

11

pulse_re11

pu
ls

e_
re

11

pulse_re11

data_indata_in

token_out_dmatoken_out_dma

token_in_dmatoken_in_dma

addr_out

addr_out

addr_out

addr_out

data_out

data_out

data_out

data_out

token_out_rotoken_out_ro

token_in_rotoken_in_ro

bus_clk

bus_clk

bus_clk

bus_clk

bus_clk

bus_clk

bus_clk

bus_clk

gc
lk

gc
lk

gclk

gclk

gclk

gc
lkgc

lk

gc
lkgclk

gc
lk

gc
lk

gclk

gclk

gclk

gc
lkgc

lk

gc
lkgclk

rd_enable_c

rd
_e

na
bl

e_
c

rd_enable_c

rd
_e

na
bl

e_
c

wr_enable_c

w
r_

en
ab

le
_c

wr_enable_c

w
r_

en
ab

le
_c

rd_enable_t

rd
_e

na
bl

e_
t

rd_enable_t

rd
_e

na
bl

e_
t

wr_enable_t

w
r_

en
ab

le
_t

wr_enable_t

w
r_

en
ab

le
_t

tst_out

ts
t_

ou
t

tst_out

ts
t_

ou
t

evc_out

ev
c_

ou
t

evc_out

ev
c_

ou
t

Fig. 4 – Block diagram of the “Carrier” box of fig. 3.

The mezzanines M1 and M2 are a six-fold instance of the block diagram of a single channel,
shown in fig. 5.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 13

channel

ev_energy

ev_pulse

ch

ev_energy_re

ev_pulse_re

gclk

L1A

L1A_latency

local_trigger

matching_window

timestamp

rst

C1

ch1ch1

ev_pulse1ev_pulse1

ev_pulse_re1ev_pulse_re1
ev_energy_re1ev_energy_re1

ev_energy1ev_energy1
gclkgclk

matching_windowmatching_window

timestamp (15:0)timestamp (15:0)

L1AL1A

L1A_latencyL1A_latency

local_triggerlocal_trigger

rstrst

Fig. 5 – Block diagram of the “Mezzanine” box of fig. 4.

4.3.2 The Channel Structure
At the heart of the simulation code is the channel structure, as shown in fig. 6. Samples from the
segment contact enter both a delay line and a Moving Window Deconvolution (MWD) box that
computes the energy of the pulse and stores the value in a fifo (en_fifo) for later readout. Upon
arrival of a local trigger, a pulse controller box (pulse_cntr) moves a predefined number of samples
from the delay line into an event fifo (ev_fifo), thus isolating the rising edge of the pulse.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 14

tstamp_fifo

delay_fifo

ch_fifo

ev_fifo

en_fifo

pulse_cntr

trigger_matching

MWD

energy_cntr

tstamp_in

ch (13:0)ch (13:0)

L1AL1A

w
rit

e_
en

ab
le

_t
w

rit
e_

en
ab

le
_t

pu
ls

e_
ou

t
pu

ls
e_

ou
t

tim
es

ta
m

p_
ou

t
tim

es
ta

m
p_

ou
t

w
rit

e_
en

ab
le

_p
w

rit
e_

en
ab

le
_p

local_triggerlocal_trigger

re
ad

_e
na

bl
e_

t
re

ad
_e

na
bl

e_
t

en
er

gy
_o

ut
en

er
gy

_o
ut

w
rit

e_
en

ab
le

_e
n

w
rit

e_
en

ab
le

_e
n

read_enable_dread_enable_d

read_enable_cread_enable_c

write_enable_evwrite_enable_ev timestamp (15:0)

tim
es

ta
m

p
(1

5:
0)

timestamp (15:0)

timestamp (15:0)

tim
es

ta
m

p
(1

5:
0)

timestamp (15:0)

ch
_o

ut
ch

_o
ut

gclk

gclk

gclk

gclk

gclk

gclkgclk

gclk

gclk

gclk

gclk

gclk

gclk

gclk

gclk

gclk

gclk

gclkgclk

gclk

gclk

gclk

gclk

gclk

ev_pulseev_pulseev_pulse_reev_pulse_re

ev_energyev_energyev_energy_reev_energy_re

L1A_latencyL1A_latency

matching_windowmatching_window

latch_energy

latch_energy

latch_energy

latch_energy

rst

rst

rst

rst

rst

rst

rst

rst

rst

rst

Fig. 6 – The channel structure.

4.3.3 Trigger Matching
The arrival of a trigger validation instead enables the storage of the current GTS time into a
timestamp fifo (tstamp_fifo) to be used by the trigger matching engine.
The trigger matching engine is in charge of correlating the trigger validations stored in the
tstamp_fifo with candidate local triggers that have triggered the storage of samples into the ev_fifo.
In other words, trigger matching is a time match between a trigger validation time tag and the local
trigger time tags themselves. The idea is shown in figure 7.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 15

Fig. 7 – Trigger matching technique.

Local triggers and subsequent trigger validations differ in time for a number of reasons. The most
obvious is that the latters are the result of logical operations performed on the formers, so they are
intrinsically time ordered. There is a constant time difference between the two due to hardware
infrascture that transports local trigger signals to a central trigger processor for validation
generation. There is also a variable time difference between the two due to the mechanism of local
trigger generation which depends somehow on the amount of charge induced by gamma
interaction in each single crystal. As a consequence, the trigger matching procedure must be done
inside a window, the match window, as show in the following figure.

Fig. 8 – Window based Trigger matching.

At the time of a validation arrival (‘trigger input’ in fig. 8), from the current value of GTS clock a
trigger latency value is subtracted. The result is an estimate of the time at which the candidate
local triggers have happened. From that time on, for a period that equals the match window, all
events whose time tags fall inside the window get validated and will be moved in the readout fifo.
The events whose time tags fall before the time window can be discarded from the input fifo
because they have no chance to be validated in future. Those events instead, with time tags that
are younger than the match window will remain in place due to the possibility of being validated at
a later time.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 16

4.3.4 Simulation Results

5. Global Timestamp Protocol

To be filled …

6. Global Trigger Algorithms

To be filled …

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 17

7. Implementation

AGATA GTS will have a tree topology, originating from the root node that will therefore act at the
same time as the source of all global information (clock, timestamps, commands, L1 validations)
and the sink of all trigger requests, fast monitoring signals and service requests coming from the
crystals.

Fig. 9 – GTS topology

To solve the problems of building a bi-directional, high capacity and high speed tree network that
drives hundreds of nodes displaced several tenths of meters apart, a certain number of
technological issues must be addressed. Among them, the fan-out of a source synchronous
transmission, noise immunity, low error rate and throughput. Modern serial transceivers, as used in
commercial high speed telecom networks, can solve part of them. Simply stated, these devices
basically transfer a digital pattern from one side of a transmission channel to the other (and
viceversa) by serializing the pattern at a speed that equals the input clock frequency times the
pattern width; the serialized pattern is then reconstructed identical at the receiving side of the
transmission line by means of a serial to parallel conversion. AGATA GTS may greatly benefit of
the technological solutions devoted to high speed serial transmissions, because, by exploiting the
use of these components, the design can be kept simple yet adequate. The solution proposed is
sketched in the following figure.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 18

GTS
Supervisor

GTS Fanin-Fanout

GTS Transceiver
mezzanine

WEB Interface

ATCA backplane

Fig. 10 – GTS technology and implementation

The hierarchy is composed of five different parts:

1. the root node
2. the backplane
3. the fanin-fanout nodes
4. the fibre connections
5. the mezzanine interface

7.1 The root node

This is the global time reference source and trigger processor. It might actually split in two boards,
one for each direction of transmission. It sits in the central slot(s) of a (dual) star backplane and
sources:

a) global clock

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 19

b) global timestamps (global clock counter, global event counter)
c) fast commands

and sinks:
a) trigger requests
b) fast monitoring feedback signals
c) error notifications

A block diagram is shown in the next figure:

Fig. 11 – Block diagram of GTS root node

7.2 The backplane

Advanced Telecommunication Architecture (ATCA) is a telecom specification (PICMG3.0) [2]
aimed at standardizing the connectivity backplane for high speed, high throughput computing and
switching devices. The specification is geared towards serial switched technology and is of interest
for AGATA GTS. Backplanes following ATCA specification have dual star (or full mesh) topology

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 20

with the two central slots as the centres of the two stars and 6+6 slots on the periphery (14
peripheral slots is also an option). Each slot is connected to the centre by means of a certain
number of matched impedance PCB traces (whose differential skew is less than 10ps) and routed
to sustain a bit rate in excess of 3 gigabits/s per pair.

7.3 The Fanin-fanout nodes

These nodes act as splitting-combining nodes. When splitting, they replicate the information
originated in the root node in each of the channels that they address; when combining, they merge
the information originated in the crystals and send it to the root node. Each node is actually a board
sitting in one of the 12 peripheral slots of the ATCA backplane and addresses 16 crystals. A block
diagram of the board is show in the following figure:

Fig. 12 – Block diagram of GTS fanin-fanout module

7.4 The fibre connections

Long distance transmission, noise immunity, galvanic isolation and low bit error rate (BER) will
benefit from the use of serial optical transceivers and fibre connections between each channel of

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 21

the fanin-fanout nodes and the mezzanine interfaces that are hosted in the front-end electronics of
each crystal.

7.5 The mezzanine interface

This is the block diagram of the GTS interface at the crystal level (or any ancillary detector). It
decodes the information originated from the root node in one direction and encodes the information
originated in the crystal in the opposite direction. The block diagram shown in the next figure is self
explanatory.

SDRAM 16Mb
 (Linux OS)

EEPROM Boot
 (Linux OS)

CARRIER ACCESS

XILINX VIRTEXII PRO

Clock100+
Clock100 -

Clock100des+
Clock100des -

Trigger_Valid0
Trigger_Valid1
Trigger_Req0
Trigger_Req1

Time_Stamp[47..0
Event_count[15..0
EvCnt_Str0
EvCnt_Str1

BrdCst_in[7..0]
BrdCst_in_Str0
BrdCst_in_Str1

BrdCst_out_Str
BrdCst_out_[7..0]

Ethernet_P0+
Ethernet_P0 -
Ethernet_P1+
Ethernet_P1 -
Ethernet_P2+
Ethernet_P2 -
Ethernet_P3+
Ethernet_P3 -

TCK
TMS
TDI
TDO

Master_Reset
Error_0
Error_1

Clock Data
Recovery Phase Shifter LVPECL

LVPECL

PLL Clock Filter

POWER PC

FPGA Firmware
 EEPROM

OPTICAL
TRANSCEIVER

48 bit Recovered Time Stamp
16 bit Recovered Event Counter

TRIGGER
 LOGIC

BROADCAST
COMMANDS
INTERFACE

System Clock SCL
SDA

I2C Interface

JTAG Logic

Fig. 13 – Block diagram of GTS mezzanine interface

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 22

The form factor of the board has been chosen so that it can plug on a carrier board without custom
PCB manufacturing as shown in fig. 14

Fig. 14 – Common Mezzanine Card (CMC) form factor for the GTS interface

74mm

149mm

149mm

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 23

8. Phase equalization of GTS clocks

The GTS clock, together with its associated timestamp, constitute the time reference for the whole
AGATA system. In each crystal, a replica of the main GTS clock, sourced through a dedicated
GTS interface mezzanine, feeds the analog-to-digital converters for digitization of segments
signals from the charge preamplifiers. The same clock feeds also the communication devices that
transfer the relevant information from the crystals up to the local level processing hardware.
Moreover, as the whole data acquisition process relies totally on timestamps for the event building
process, it is easy to understand that the GTS system must source replicas of its main clock and
timestamp that are time aligned at each crystal level. Failing to do so would imply a number of
consequences, the most obvious of which is the incorrect time tagging of event fragments and
hence incorrect event building, but also potentially incorrect trigger processing. Hence, the problem
of clock phase equalization is a crucial issue in AGATA.
The reasons behind the misalignment of clock phases among different crystals are multiple. To cite
a few there are: different PCB trace lengths, different fiber lengths, different propagation delays of
active devices, different routes inside programmable logic devices, different process-voltage-
temperature corners of active devices, different equalization fifo’s depths of serializer-deserializer
(serdes) devices used throughout the GTS system and many others. While a detailed model of
clock phase mismatches is beyond the scope of this document, from what stated above it is
obvious that we need to devise a method for diagnose and take care of phase misalignement. An
analysis of the problem shows that the contributions to the phase mismatch can be divided in four
categories:

 Type of Contribution Reason
1 Fixed PCB trace lengths, propagation delays, …

2 Static Equalization fifo’s of serdes devices

3 Slowly changing Temperature, optical phase dispersion, …

4 Rapidly changing Power supply ripple, …

Table 2: Contributions to phase mismatch.

While the contributions that fall in the first category can be measured once, those falling in the last
three categories must be diagnosed at run-time and fixed with a fast and automated procedure, so
that the contribution to the global system inefficiency is negligible.
In AGATA, two different methods of phase equalization are currently under investigation:

8.1 Continuous resets method

The situation is the following: in the root node of the GTS tree the global clock and associated
timestamp are generated and broadcasted to end nodes. In the end nodes the global clock is
reconstructed and phase locked with the clock of the root node but with an unpredictable phase.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 24

Fig. 15 – Root node – End node pair with loopback

The main reason of phase uncertainty is contributions of type 2, e.g. due to the nature of clock data
recovery circuit (CDR) of serdes devices. By putting a loopback in one end node, from the root
node we measure the round trip time of a pulse and try to devise a method from which we can
safely assume that the downlink and uplink channels are symmetric and hence the measurement
(divided by two) equals the time of flight of a pulse from the root node to that end node. By
repeating the measurement for each end node we will know how to setup programmable delay
lines at the end nodes in order to reach phase equalization for all crystals.
From laboratory test, we can basically assume that the phase of recovered clock at one end node
is almost uniformly distributed in one clock period. If we take the phase of recovered clock as a
random variable, its probability density function looks like in figure 16

Fig. 16 – Ideal probability density function of recovered clock phase at the end node

Now if we consider the transceiver pair with loopback, as in figure 15 and we consider the phase of
the recovered clock at the root node as a random variable, we might assume that it is the sum of
two identical variables (as long as contributions of type 1 to phase mismatch have been minimized
by design).

Fig. 17 – Global clock and recovered clock at the root node

The channels are in fact mutually independent because the transmitter clock is independent from
the recovered clock and viceversa, so the probability density function should look like:

Root node

MGT Opt Fiber

Mezzanine

Tx

Rx

Root tx

Root rx

t1 t1+T/2 t1-T/2

P(t)

1/T

t

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 25

Fig. 18 – Ideal probability density function of recovered clock phase at the root node

In order to obtain the single channel latency dividing the total round trip time (RTT) by two, we
have to look for a situation of maximum symmetry between the channels. The idea is to perform
several reset-and-measure cycles until the RTT measure is close to the expected maximum or
minimum. When this happens one can safely assume that the channels times of flight are
respectively both close to their maximum or minimum and we can divide by two the RTT value to
obtain the individual channel latency.

8.1.1 Test results

The test setup is illustrated in the following figure.

Fig. 19 – The test stand for the continous resets method.

TX1

RX1

RX2

TX2
SHIFTER / FILTER

RECOV. CLOCK

DATA

100m FIBRE

100 MHz OSC

DATA
PATTERN

DATA OUT

RDOUT CLK

RDOUT CLK

TD

P1

P3
oscilloscope

RocketIO MGT

“ROOT”

TU

TL

P2

RocketIO MGT

“NODE”

ASYMMETRY = |TD-TU| / 10 [ns]

2*t1 2*t1+T 2*t1-T

P(t)

1/T

t

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 26

A data pattern P1 is injected at the root node in the downlink. At the end node the same pattern
(P2) is recovered from the serial stream and its time of flight is measured by means of an
oscilloscope (triggered by the time of occurrence of P1). The pattern is loopbacked towards the
root node, recovered (P3) and its time of flight measured in the same way. In figure 20 the latency
distributions of the downlink (TD) and uplink (TU) in a clock cycle are reported. In figure 21 the
latency distribution of the loop (TL) in a clock cycle is reported.

0

200

400

600

800

1000

1200

1400

1600

83
5

83
7

83
8

84
0

84
1

84
3

84
4

84
6

84
7

84
9

85
0

85
2

85
3

85
5

latency [ns]

fr
eq

. [
#]

0

100

200

300

400

500

600

700

83
5

83
6

83
7

83
8

83
9

84
0

84
1

84
2

84
3

84
4

84
5

84
6

84
7

84
8

84
9

85
0

85
1

latency [ns]

fr
eq

. [
#]

Fig. 20 – Latency distribution of downlink (TD – upper) and uplink (TU – lower).

0

200

400

600

800

1000

1200

16
73

16
75

16
77

16
79

16
81

16
83

16
85

16
87

16
89

16
91

16
93

16
95

16
97

16
99

17
01

17
03

latency [ns]

fr
eq

. [
#]

Fig. 21 – Latency distribution of the loop (TL).

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 27

By defining the degree of asymmetry as:

)(10 ns
TUTD

Asymmetry
−

=

one can plot the degree of asymmetry of the loop versus the global latency as in figure 22:

0,0%

50,0%

100,0%

150,0%

200,0%

250,0%

300,0%

350,0%

16
70

16
71

16
72

16
73

16
74

16
75

16
76

16
77

16
78

16
79

16
80

16
81

16
82

16
83

16
84

16
85

16
86

16
87

16
88

16
89

16
90

16
91

16
92

16
93

16
94

16
95

16
96

16
97

16
98

16
99

17
00

17
01

17
02

17
03

17
04

17
05

latency [ns]

as
ym

m
et

ry

Fig. 22 – Loop asymmetry versus global latency.

The measurements shown in figure 22 have been obtained by performing more than 11.000 reset-
and-measure cycles on the test stand of figure 19 with an automated procedure. This picture
deserves some useful comments:

 Two minima of asymmetry are evident at the extremes of the global latency interval
[1677..1696] ns. This means that, at those minima (which correspond respectively to the
global minimum and maximum of the loop latency) the downlink and uplink latency are
almost equal and the two channels (uplink and downlink) are symmetric. Hence, we can
estimate the end node clock phase with a measurement procedure performed at the root
node.

 The resolution of the measurements is 500 ps, which corresponds to the clock cycle of the
serial stream.

 There is a certain number of points outside the [1677..1696] ns interval. These points are
due to computation errors in the automation procedure (less than one hundred out of more
than eleven thousands).

 There is a pedestal in the plot greater than zero, e.g. the minima of asymmetry at the
extremes of the interval are not zero. In other words there is a fixed contribution to
asymmetry, e.g. a systematic error due to contribution of type 1 (PCB traces and cable
mismatches, propagation delays impairments, impedance mismatches, etc.). This type of
contribution can easily be measured from a plot like the one in fig. 22. Once subtracted, the
plot in fig. 22 becomes a perfect triangle and the minima at the extremes of the interval
become global minima.

Due to the nature of our test stand, the measurements shown in fig. 22 took more than two hours
to be performed. While an investigation is currently under way to speed up the measurement

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 28

process, it is evident that it is in the nature of the method itself to perform repetitive resets of
serdes devices until a preferred latency is measured. That is, the method can be time consuming
because we cannot foresee the time it takes to converge. For this reason it is not obvious that it
might be used online, for periodic calibrations of the whole GTS distribution tree at beam time.

8.2 Direct Measurement

8.2.2 Test Results

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 29

9. References

[1] – I. Lazarus editor - AGATA Pre-Processing Hardware – Draft. Document – 17/12/2003
[2] – PICMG 3.0 – Advanced Telecommunication Computing Architecture – http://www.picmg.org

10. Revision History

12 Jan 2004 -- Draft version 1.0.
10 Aug 2004 -- Draft version 1.1.
24 Oct 2004 -- Draft version 1.2.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 30

Appendix A. GTS Mezzanine Interface Pin-out

The GTS mezzanine interface pin-out is specified as:

Name Direction No. of bits Description

Clock100 Out 1 Global clock

Clock100des Out 1 Global clock phase adjustable

Timestamp Out 48 Global clock counter

Ev_counter Out 16 Event counter

Scl In 1 I2C interface

Sda In/Out 1 I2C interface

Trigger_valid Out 1 Level 1 trigger validation

Trigger_req In 1 Trigger Request

EvCnt_str Out 1 Event Counter strobe

BrdCst_in Out 8 Broadcast Command bus from root node

BrdCst_in_str Out 1 Broadcast bus strobe

BrdCst_out In 8 Broadcast Command bus towards root node

BrdCst_out_str In 1 Broadcast bus strobe

Error Out 1 Transmission error

Master_reset In 1 Mezzanine reset

Ethernet[0-3] In/Out 4 Ethernet connection

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 31

Appendix B. Costs

B.1 Single Crystal prototype costs.

For single crystal prototype operation only 1 GTS Mezzanine card (working in
emulation mode) is needed. GTS Mezzanine costs are detailed in the Pre-Processing
Hardware Specs. []

B.2 Demonstrator costs.

For demonstrator operation (15 crystals) the following items are needed:

• 15 Mezzanine interfaces (costs included in the Pre-processing Hardware Specs
[])

• 1 Fanin-fanout board (16 channels)
• 1 Root Node (possibly splitted in two – see before)
• 1 ATCA crate

Root node(s) Qty Unit price Cost
Pcb Layout 2 €5000 €10000
Pcb 2 €1000 €2000
VirtexII pro 2 €2000 €4000
Memory 2 €10 €20
Flash mem 2 €100 €200
LVDS serdes 24 €20 €480
Power supply 2 €100 €200
Connectors €300 €600
PLL 2 €120 €240
Misc 2 €300 €600
Total €18400

Fanin-Fanout Qty Unit price Cost
Pcb Layout 1 €5000 €5000
Pcb 1 €1000 €1000
VirtexII pro 1 €2000 €2000
VirtexII pro V70 2 €500 €1000
Memory 1 €10 €10
Flash mem 1 €100 €100
Optical Transceivers 16 €250 €4000
Power supply 1 €100 €200
Connectors €300 €300
PLL 2 €120 €240
Misc 1 €300 €300
Total €14150

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 32

Assuming that, at the prototyping stage, two runs are needed to obtain a working system,
then the costs for hardware for the demonstrator are (€18400 + €14150) X 2 = €65100 for
the boards and €20000 for one ATCA crate. In total €85100.

Instrumentation &
Software

Qty Price

TDR test Jig 1 €4000
Differential Probe 1 €4000
DSO 4GHZ 1 €45000
2nd ATCA crate 1 €20000
Optical Power Meter 1 €2000
ATCA extender 1 €2000
Xilinx Dev Kit 1 €5000
Xilinx ISE 1 €500/year
Synplify Pro 1 €1000/year
VisualHDL 1 €2000/year
Synopsys 1 €2000/year
Total €87500

NRE costs for Xilinx IP Cores are detailed in the Pre-Processing Hardware Specs.

 Draft version 1.2 – 24 October 2004

M. Bellato – INFN Padova 33

Appendix C. Timescale and manpower

Timescale and manpower for the GTS Mezzanine are detailed in the Pre-Processing Hardware
Specs [1]. It is reported here for sake of completeness:

C.1 GTS interface mezzanine

Task Time
(months)

Manpower
(1 man)

PCB layout & Assembly 6 1
Testing
FPGA development 9 1
Software

Total 15 1

For the root node and fanin-fanout boards the following figures hold:

C.2 Root Node

Task Time
(months)

Manpower
(1 man)

PCB layout & Assembly 4 1
Testing 1 1
FPGA development 12 1
Software 7 1

Total 24 1

C.3 Fanin-fanout Node

Task Time
(months)

Manpower
(1 man)

PCB layout & Assembly 4 1
Testing 1 1
FPGA development 12 1
Software 7 1

Total 24 1

